本文共 1060 字,大约阅读时间需要 3 分钟。
中国科学院5月3日在上海举行新闻发布会,对外宣布世界首台10比特光量子计算机研发成功。
图为发布会现场
这项世界领先的量子计算机来自于中国科学技术大学潘建伟教授及其同事陆朝阳、朱晓波等,并联合浙江大学王浩华教授研究组一同攻关。这台具有10个量子位的光量子计算机克服了以往同类型量子计算机的量子位数目受限和低采样率的问题,计算机采用的架构还具有继续增加量子位数目和提高采样率的能力。
今天在上海,世界首台超越早期经典计算机的量子计算机宣告问世。在光学体系上,该研究团队在2016年已实现国际最高水平的十光子纠缠操纵。今年,在这一基础上,又利用我国自主研发的高品质量子点单光子源构建了世界首台在性能上能够超越早期经典计算机的单光子量子计算机,通过发展全局纠缠操作,成功实现了目前世界上最大数目的超导量子比特的纠缠和完整的测量。最新实验测试表明,该原型机的“玻色取样”速度比国际同行之前所有类似的实验加快至少24000倍,比人类历史上第一台电子管计算机(ENIAC)和第一台晶体管计算机(TRADIC)运行速度快10-100倍。
图为光量子实验室照片
业内进展方面,D-Wave已于2017年发布了具有2000个量子位的量子退火计算机2000Q。但由于D-Wave这一类型的计算机只能执行“量子退火”一种算法,它的应用受到限制,即便业内也对D-Wave是否是真正的量子计算机有诸多争议。MIT于2016年制造出了具有5个量子位的原子阱量子计算机,并成功用Shor算法进行了因数分解实验。谷歌也于2016年7月表明了自己要建立世界上第一台超高性能量子计算机的愿景,不过目前还未看到后续进展。
目前的量子计算机还不能完成传统计算机所能完成的各种任务。存储和计算原理不同,传统计算机的每一位只能传输“0”或“1”中的某一个,而量子计算机可以传输和计算“0”或“1”的叠加态,然后对同样处在“0”或“1”叠加态的结果进行测量,以一定概率的概率得到结果,并配合反复测量,得到传统的非叠加态结果。但某一些特定的运算,利用量子计算机的计算特点可以很快解决,比如对大数进行因子分解的Shor算法(可以用于破解传统计算机加密)、量子退火算法(对复杂优化问题进行最值求解)、Grover量子搜索算法(在很大的集合中寻找指定的元素),传统计算机进行类似的计算,所需时间与任务复杂度成几何级数增加,甚至几乎不能计算,但量子计算机所需的时间仅仅是线性增加而已。
原文发布时间为:2017-05-06
本文作者:杨晓凡 本文来源:,如需转载请联系原作者。